Logo Search packages:      
Sourcecode: gretl version File versions

mod_garch.c

/* gretl - The Gnu Regression, Econometrics and Time-series Library
 * Copyright (C) 1999-2006 Allin Cottrell and Riccardo "Jack" Lucchetti
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License 
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This software is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License 
 * along with this software; if not, write to the 
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 02111-1307, USA.
 */

/*
  Modular GARCH routines by Jack Lucchetti, October 2006. For the 
  moment, meant to replace seamlessly fcp.c, but syntax should evolve in 
  the future.
*/

#include "libgretl.h"
#include "libset.h"    /* unused */
#include "mod_garch.h"

#define GDEBUG 0

enum {
    INIT_VAR_THEO,
    INIT_VAR_OLS,
    INIT_VAR_RESID
};

enum {
    DIST_NORM,
    DIST_T
};

typedef struct garch_container_ garch_container;

struct garch_container_ {
    double *y;           /* dependent variable */
    const double **X;    /* regressors (constant excluded) */
    int t1;              /* beginning of sample */
    int t2;              /* end of sample */
    int nobs;            /* number of observations */
    int ncm;             /* number of regressors (constant excluded) */
    int p;               /* GARCH p */
    int q;               /* GARCH q */
    int k;               /* total number of parameters */
    int init;            /* h0 initialisation method */
    int distrib;         /* innovations distribution (only Gaussian for now) */
    double *e;           /* residuals */
    double *e2;          /* squared residuals */
    double *h;           /* conditional variance */
    int ascore;          /* 1 for analytical score provided */
    double **score_e;    /* derivatives of the residuals wrt the parameters */
    double **score_h;    /* derivatives of the variances wrt the parameters */
    double **blockglue;  /* derivatives of the loglik wrt residuals and variances */
    double **G;          /* score matrix */
    double *tot_score;   /* score vector (sum of G) */
};

#if 0
static void mark (int *n) 
{ 
    if (n == NULL) {
      fprintf(stderr,"Ha!\n"); 
    } else {
      fprintf(stderr,"Ha! (%d)\n", *n); 
      *n += 1;
    }
}
#endif

#define MOD_DEBUG 0

static void free_eh_derivs (garch_container *DH)
{
    doubles_array_free(DH->score_e, DH->k);
    doubles_array_free(DH->score_h, DH->k);
    doubles_array_free(DH->G, DH->k);
    doubles_array_free(DH->blockglue, 2);
}

static int allocate_eh_derivs (garch_container *DH)
{
    int k = DH->k;
    int n = DH->nobs;
    int err = 0;

    DH->score_e = doubles_array_new(k, n);
    DH->score_h = doubles_array_new(k, n);
    DH->G = doubles_array_new(k, n);
    DH->blockglue = doubles_array_new(2, n);

    if (DH->score_e == NULL ||
      DH->score_h == NULL ||
      DH->G == NULL ||
      DH->blockglue == NULL) {
      free_eh_derivs(DH);
      err = E_ALLOC;
    } 

    return err;
}

static garch_container *
garch_container_new (double *y, const double **X, 
                 int t1, int t2, int nobs, int nx,
                 int p, int q, int init_method, 
                 double *res, double *h, 
                 int analytical)
{
    garch_container *DH = malloc(sizeof *DH);

    if (DH == NULL) {
      return NULL;
    }

    DH->e2 = malloc(nobs * sizeof *DH->e2);
    if (DH->e2 == NULL) {
      free(DH);
      return NULL;
    }

    DH->y = y;
    DH->X = X;
    DH->t1 = t1;
    DH->t2 = t2;
    DH->nobs = nobs;
    DH->ncm = nx;
    DH->p = p;
    DH->q = q;
    DH->init = init_method;
    DH->e = res;
    DH->h = h;
    DH->ascore = analytical;
    DH->k = 1 + nx + 1 + p + q;

    DH->score_e = NULL;
    DH->score_h = NULL;
    DH->G = NULL;
    DH->blockglue = NULL;

    if (DH->ascore) {
      if (allocate_eh_derivs(DH)) {
          free(DH->e2);
          free(DH);
          DH = NULL;
      }
    }

    return DH;
}

static void garch_container_destroy (garch_container *DH)
{
    if (DH->ascore) {
      free_eh_derivs(DH);
    }
    free(DH->e2);
    free(DH);
}

/* *ARCH log-likelihood for Gaussian innovations */

static double normal_ll (const garch_container *DH)
{
    double e2t, ht, ll = 0.0;
    int t;

    for (t=DH->t1; t<=DH->t2; t++) {
      e2t = DH->e2[t];
      ht = DH->h[t];
      if (na(e2t) || na(ht)) {
          return NADBL;
      }
      ll -= log(ht) + e2t / ht;
    }

    ll *= 0.5;
    ll -= (DH->t2 - DH->t1 + 1) * LN_SQRT_2_PI;

    return ll;
} 

static void normal_score (const garch_container *DH)
{
    double ut;
    int t;

    for (t=DH->t1; t<=DH->t2; t++) {
      DH->blockglue[0][t] = ut = -DH->e[t] / DH->h[t];
      DH->blockglue[1][t] = 0.5 * (ut * ut - 1.0 / DH->h[t]);
    }
} 

/* Compute the GARCH quantities */

static int garch_etht (const double *par, void *ptr)
{
    garch_container *DH = (garch_container *) ptr;

    int t1 = DH->t1;
    int t2 = DH->t2;
    int p = DH->p;
    int q = DH->q;

    int maxlag = (p > q)? p : q;

    int i, j, k, ret = 0;
    int ncm = DH->ncm;

    double **dedq = DH->score_e;
    double **dhdq = DH->score_h;

    int t, T = t2 - t1 + 1;
    double et, ht, tmp, h0 = 0.0;
    double u_var = 0.0;

    /* compute residuals */

    tmp = 0.0;
    for (t = t1-maxlag; t <= t2; t++) {
      if (t < t1) {
          et = 0.0;
      } else {
          et = DH->y[t] - par[0];
          if (DH->X != NULL) {
            for (i=0; i<ncm; i++) {
                et -= DH->X[i][t]*par[i+1];
            }
          }
          DH->e[t] = et;
          DH->e2[t] = et * et;
          tmp += DH->e2[t]; 
      }
    }

    if (DH->ascore) {
      for (t=t-maxlag; t<t1; t++) {
          for (i=0; i<DH->k; i++) {
            dedq[i][t] = 0.0;
          }
      }
    }
      
    /* h0 and derivatives */

    switch (DH->init) {
    case INIT_VAR_OLS:
      h0 = 1.0;
      break;
    case INIT_VAR_RESID:
      h0 = tmp / T;
      break;
    case INIT_VAR_THEO:
      tmp = 1.0;
      for (i=ncm+2; i<DH->k; i++) {
          tmp -= par[i];
      }
      u_var = par[ncm+1] / tmp;
      h0 = u_var;
      break;
    }

    for (t=t1-maxlag; t<t1; t++) {
      DH->h[t] = h0;
      DH->e2[t] = h0;
    }

    if (DH->ascore) {
      double dh0;

      switch (DH->init) {
      case INIT_VAR_OLS:
          for (t=t1-maxlag; t<t1; t++) {
            for (i=0; i<DH->k; i++) {
                dhdq[i][t] = 0.0;
            }
          }
          break;

      case INIT_VAR_RESID:
          dh0 = 0.0;
          for (t=t1; t<=t2; t++) {
            dh0 -= DH->e[t];
          }
          for (t=t1-maxlag; t<t1; t++) {
            dhdq[0][t] = dh0  * 2.0 / T;
          }
          
          for (i=0; i<ncm; i++) {
            dh0 = 0.0;
            for (t=t1; t<=t2; t++) {
                dh0 -= DH->e[t] * DH->X[i][t];
            }
            for (t=t1-maxlag; t<t1; t++) {
                dhdq[i+1][t] = dh0  * 2.0 / T;
            }
          }
          
          for (t=t1-maxlag; t<t1; t++) {
            for (i=ncm+1; i<DH->k; i++) {
                dhdq[i][t] = 0.0;
            }
          }
          
          break;
          
      case INIT_VAR_THEO:
          for (t=t1-maxlag; t<t1; t++) {
            for (i=0; i<=ncm; i++) {
                dhdq[i][t] = 0.0;
            }
          }
          dh0 = u_var / par[ncm+1];
          for (t=t1-maxlag; t<t1; t++) {
            dhdq[ncm+1][t] = dh0;
          }
          dh0 *= u_var;
          for (t=t1-maxlag; t<t1; t++) {
            for (i=ncm+2; i<DH->k; i++) {
                dhdq[i][t] = dh0;
            }
          }
          break;
      }
      
    }

    /* in-sample loop */

    for (t=t1; t<=t2; t++) {
      ht = par[ncm+1];

      for (i=1; i<=p; i++) {
          ht += DH->e2[t-i] * par[ncm+i+1];
      }

      for (i=1; i<=q; i++) {
          ht += DH->h[t-i] * par[ncm+i+p+1];
      }
      
      DH->h[t] = ht;
          
      if (DH->ascore) {
          
          /* constant */
          dedq[0][t] = -1.0;
          k = ncm+1;
          dhdq[0][t] = 0.0;
          for (i=1; i<=p; i++) {
            if (t - p < t1 && DH->init == INIT_VAR_RESID) {
                dhdq[0][t] += par[k+i] * dhdq[0][t1-1];
            } else {    
                dhdq[0][t] += 2.0 * par[k+i] * DH->e[t-i] * dedq[0][t-i];
            }
          }
          
          /* regressors */
          for (i=1; i<=ncm; i++) {
            dedq[i][t] = -(DH->X[i-1][t]);
            k = ncm+1;
            dhdq[i][t] = 0.0;
            for (j=1; j<=p; j++) {
                if (t - p < t1 && DH->init == INIT_VAR_RESID) { 
                  // add INIT_THEO here
                  dhdq[i][t] += par[k+j] * dhdq[i][t1-1];
                } else {      
                  dhdq[i][t] += 2.0 * par[k+j] * DH->e[t-j] * dedq[i][t-j];
                }
            }
          }
          
          /* garch params: omega */
          dedq[ncm+1][t] = 0.0;
          dhdq[ncm+1][t] = 1.0;
          if (t - p < t1 && DH->init == INIT_VAR_THEO) {
            for (i=1; i<=p; i++) {
                dhdq[ncm+1][t] += par[ncm+1+i] * dhdq[ncm+1][t1-1];
            }
          }
          
          /* garch params: alphas */
          k = ncm + 2;
          for (i=1; i<=p; i++) {
            dedq[k][t] = 0.0;
            dhdq[k][t] = DH->e2[t-i];
            if (t - p < t1 && DH->init == INIT_VAR_THEO) {
                for (j=0; j<p; j++) {
                  dhdq[k][t] += par[k+j] * dhdq[k][t1-1];
                }
            }
            k++;
          }
          
          /* garch params: betas */
          k = ncm + p + 2;
          for (i=1; i<=q; i++) {
            dedq[k][t] = 0.0;
            dhdq[k][t] = DH->h[t-i];
            if (t - p < t1 && DH->init == INIT_VAR_THEO) {
                for (j=0; j<p; j++) {
                  dhdq[k][t] += par[k+j-p] * dhdq[k][t1-1];
                }
            }
            k++;
          }
          
          /* "real" recursive part */
          for (i=0; i<DH->k; i++) {
            k = ncm + p + 2;
            for (j=1; j<=q; j++) {
                dhdq[i][t] += par[k++] * dhdq[i][t-j];
            }
          }
          
      }     
    }
    
#if MOD_DEBUG
    fputs("\n\n", stderr);
    for (i=0; i<DH->k; i++) {
      fprintf(stderr, "garch_etht: par[%d] = %9.6f ", i, par[i]);
    }
    fputc('\n', stderr);
    for (t=t1-maxlag; t<=20; t++) {
      if (t < t1) {
          fputc('*', stderr); 
      } else {
          fputc(' ', stderr);
      }
      fprintf(stderr, " t:%4d ", t);
      fprintf(stderr, " %8.4f", DH->e[t]);
      fprintf(stderr, " %8.4f", DH->e2[t]);
      fprintf(stderr, " %8.4f", DH->h[t]);
      fprintf(stderr, " %12.8f", dedq[ncm+2][t]);
      fprintf(stderr, " %12.8f", dhdq[ncm+2][t]);
      fputc('\n', stderr);
    }
#endif

    return ret;
} 

static double loglik (const double *theta, void *ptr)
{
    garch_container *DH = (garch_container *) ptr;
    double ll = NADBL;
    int err;

    err = garch_etht(theta, DH);
    if (!err) {
      ll = normal_ll(DH);
    }

    return ll;
}

static int score_fill_matrices (const double *theta, void *ptr)
{
    garch_container *DH = (garch_container *) ptr;
    int i, t, err;

    err = garch_etht(theta, DH);
    if (err) {
      return err;
    }

    normal_score(DH);

    for (t=DH->t1; t<=DH->t2; t++) {
      for (i=0; i<DH->k; i++) {
          DH->G[i][t] = DH->score_e[i][t] * DH->blockglue[0][t] + 
            DH->score_h[i][t] * DH->blockglue[1][t];
      }
    }

    return err;
}

static int anal_score (double *theta, double *s, int npar, BFGS_CRIT_FUNC ll, 
                   void *ptr)
{
    garch_container *DH = (garch_container *) ptr;
    double tmp;
    int t, i, err;

    err = score_fill_matrices(theta, DH);
    if (err) {
      return err;
    }

    for (i=0; i<npar; i++) {
      tmp = 0.0;
      for (t=DH->t1;t<=DH->t2; t++) {
          tmp += DH->G[i][t];
      }
      s[i] = tmp;
    }

    return err;
}

static int garch_iinfo (garch_container *DH, gretl_matrix *info)
{
    double **tmp_info;
    double tmpi, tmpj, tmpx1, tmpx2, x;
    int i, j, t;

    if (info == NULL) {
      return E_ALLOC;
    }

    tmp_info = doubles_array_new(DH->k, DH->k);
    if (tmp_info == NULL) {
      return E_ALLOC;
    }

    for (i=0; i<DH->k; i++) {
      for (j=0; j<=i; j++) {
          tmp_info[i][j] = 0.0;
      }
    }

    for (t=DH->t1; t<=DH->t2; t++) {
      for (i=0; i<=DH->ncm; i++) {
          tmpi = DH->score_h[i][t] / DH->h[t];
          tmpx1 = (i==0)? 2.0 : 2.0*(DH->X[i-1][t]);
          tmpx1 /= DH->h[t];
          for (j=0; j<=i; j++) {
            tmpj = DH->score_h[j][t] / DH->h[t];
            tmpx2 = (j==0)? 1.0 : 1.0*(DH->X[j-1][t]);
            x = tmpx1 * tmpx2 + tmpi * tmpj;
            tmp_info[i][j] += x;
          }
      }

      for (i=DH->ncm+1; i<DH->k; i++) {
          tmpi = DH->score_h[i][t] / DH->h[t];
          for (j=DH->ncm+1; j<=i; j++) {
            tmpj = DH->score_h[j][t] / DH->h[t];
            x = tmpi * tmpj;
            tmp_info[i][j] += x;
          }
      }
    }

    for (i=0; i<DH->k; i++) {
      for (j=0; j<=i; j++) {
          gretl_matrix_set(info, i, j, 0.5*tmp_info[i][j]);
          if (j < i) {
            gretl_matrix_set(info, j, i, 0.5*tmp_info[i][j]);
          }
      }
    }

    doubles_array_free(tmp_info, DH->k);

#if GDEBUG
    gretl_matrix_print(info, "Information matrix");
#endif

    gretl_invert_symmetric_matrix(info);

#if GDEBUG
    gretl_matrix_print(info, "Information matrix (inverse)");
#endif

    return 0;
}

static int garch_opg (garch_container *DH, gretl_matrix *GG)
{
    double **tmp_GG;
    double tmpi, x;
    int t, i, j;

    if (GG == NULL) {
      return E_ALLOC;
    }

    tmp_GG = doubles_array_new(DH->k, DH->k);
    if (tmp_GG == NULL) {
      return E_ALLOC;
    }

    for (i=0; i<DH->k; i++) {
      for (j=0; j<DH->k; j++) {
          tmp_GG[i][j] = 0.0;
      }
    }

    for (t=DH->t1; t<=DH->t2; t++) {
      for (i=0; i<DH->k; i++) {
          tmpi = DH->G[i][t];
          for (j=0; j<=i; j++) {
            x = tmpi * DH->G[j][t]; 
            tmp_GG[i][j] += x;
          }
      }
    }

    for (i=0; i<DH->k; i++) {
      for (j=0; j<=i; j++) {
          gretl_matrix_set(GG, i, j, tmp_GG[i][j]);
          if (j < i) {
            gretl_matrix_set(GG, j, i, tmp_GG[i][j]);
          }
      }
    }

    doubles_array_free(tmp_GG, DH->k);

#if GDEBUG
    gretl_matrix_print(GG, "OPG matrix");
#endif

    return 0;
}

static int garch_ihess (garch_container *DH, double *theta, gretl_matrix *invH)
{
    double vij, *V;
    int i, j, k, npar = DH->k;
    int err = 0;

    if (invH == NULL) {
      return E_ALLOC;
    }

    V = numerical_hessian(theta, npar, loglik, DH, &err);
    if (V == NULL) {
      return err;
    }

    k = 0;
    for (i=0; i<npar; i++) {
      for (j=i; j<npar; j++) {
          vij = V[k++];
          gretl_matrix_set(invH, i, j, vij);
          if (i != j) {
            gretl_matrix_set(invH, j, i, vij);
          }
      }
    }

#if GDEBUG
    gretl_matrix_print(invH, "Hessian (inverse)");
#endif

    free(V);

    return 0;
}

static int
garch_covariance_matrix (int vopt, double *theta, garch_container *DH,
                   double *vcv) 
{
    gretl_matrix *V = NULL;
    gretl_matrix *GG = NULL;
    gretl_matrix *iinfo = NULL;
    gretl_matrix *invhess = NULL;
    int npar = DH->k;
    int err = 0;

    if (vopt == VCV_BW || vopt == VCV_QML) {
      /* need a distinct matrix for workspace */
      V = gretl_matrix_alloc(npar, npar);
      if (V == NULL) {
          return E_ALLOC;
      }
    }

    if (vopt == VCV_OP || vopt == VCV_QML || vopt == VCV_BW) { 
      /* GG' needed */
      GG = gretl_matrix_alloc(npar, npar);
      err = garch_opg(DH, GG);
    }

    if (vopt == VCV_IM || vopt == VCV_BW) { 
      /* information matrix needed */
      iinfo = gretl_matrix_alloc(npar, npar);
      err = garch_iinfo(DH, iinfo);
    }

    if (vopt == VCV_QML || vopt == VCV_HESSIAN) { 
      /* Hessian matrix needed */
      invhess = gretl_matrix_alloc(npar, npar);
      err = garch_ihess(DH, theta, invhess);
    }

    if (err) {
      goto bailout;
    }

    switch (vopt) {
    case VCV_HESSIAN:
      V = invhess;
      invhess = NULL;
      break;
    case VCV_IM:
      V = iinfo;
      iinfo = NULL;
      break;
    case VCV_OP:
      V = GG;
      GG = NULL;
      err = gretl_invert_symmetric_matrix(V);
      break;
    case VCV_BW:
      gretl_matrix_qform(iinfo, GRETL_MOD_NONE, GG,
                     V, GRETL_MOD_NONE);
      break;
    case VCV_QML:
      gretl_matrix_qform(invhess, GRETL_MOD_NONE, GG,
                     V, GRETL_MOD_NONE);
      break;
    default: 
      break;
    }

#if GDEBUG
    gretl_matrix_print(V, "Variance-covariance matrix");
#endif

    if (!err) {
      double vij;
      int i, j;

      for (i=0; i<npar; i++) {
          for (j=i; j<npar; j++) {
            vij = gretl_matrix_get(V, i, j);
            vcv[(i*npar) + j] = vij;
            if (i != j) {
                vcv[(j*npar) + i] = vij;
            }
          }
      }
    }

 bailout:

    gretl_matrix_free(GG);
    gretl_matrix_free(iinfo);
    gretl_matrix_free(invhess);
    gretl_matrix_free(V);

    return err;
}

#if GDEBUG

static void test_score (garch_container *DH, double *theta)
{
    double *testa, *testn;
    int i, testret;

    testa = malloc(DH->k * sizeof *testa);
    testn = malloc(DH->k * sizeof *testn);

    testret = anal_score(theta, testa, DH->k, loglik, DH);
    testret = BFGS_numeric_gradient(theta, testn, DH->k, loglik, DH);

    fprintf(stderr, "ret = %d:\n", testret);

    for (i=0; i<DH->k; i++) {
      fprintf(stderr, "g[%d]: analytical = %14.8f, numerical: = %14.8f, \n", 
            i, testa[i], testn[i]);
    }
    fputc('\n', stderr);

    free(testa);
    free(testn);
}

#endif

/*
   Parameters to garch_estimate_mod()

   t1:    beginning of sample in auxiliary database
   t2:    end of sample in auxiliary database
   nobs:  total number of observations in auxiliary database
   X:     data matrix for auxiliary database (regressors, not needed on
          output)
   nx:    number of columns of X
   coeff: vector of coefficient for the conditional mean, normally
          initialised by OLS on input (not needed on output) -- does NOT
        include the constant
   nc:    number of elements in coeff
   vcv:   n^2 vector (0 on input) to store covariance matrix of coeff
   res2:  vector of 0's on input, squared resids on output (not needed)
   e:     vector of 0's on input, resids on output
   h:     null pointer on input, conditional variances on output
   y:     on input, vector with dep. var., not needed on output
   amax:  vector; element 0 holds the garch intercept; 1 and 2 the
          arch & garch orders; from 3 onwards, the arch & garch 
          parameters
   b:     0 on input, holds vector of coefficient for the conditional
          mean on output
   scale: double used to scale dep. var.
   fncount: 0 on input, holds number of function evaluations on output
   fncount: 0 on input, holds number of gradient evaluations on output
   prn:   print handle for info on iterations and other diagnostic output

*/

int garch_estimate_mod (int t1, int t2, int nobs, 
                  const double **X, int nx, double *coeff, int nc, 
                  double *vcv, double *res2, double *res, double *h,
                  double *y, double *amax, double *b, 
                  double scale, int *fncount, int *grcount,
                  PRN *prn, int vopt)
{
    garch_container *DH;
    int p = amax[1];
    int q = amax[2];
    int npar = 1 + nx + 1 + p + q;
    int analytical = 1;
    double *theta = NULL;
    int i, j, err = 0;

    /* BFGS apparatus */
    int maxit = 10000;
    double reltol = 1.0e-13;

    DH = garch_container_new(y, X, t1, t2, nobs, nx, p, q, 
                       INIT_VAR_RESID, res, h, 
                       analytical);

    if (DH == NULL) {
      return E_ALLOC;
    }

    theta = malloc(npar * sizeof *theta);
    if (theta == NULL) {
      garch_container_destroy(DH);
      return E_ALLOC;
    }

    theta[0] = gretl_mean(t1, t2, y);
    for (i=1; i<=nx; i++) {
      theta[i] = coeff[i];
    }
    theta[nx+1] = amax[0];
    for (i=nx+2, j=3; i<npar; i++) {
      theta[i] = amax[j++];
    }

#if 0
    if (DH->ascore) {
      fputs("\nUsing analytical score\n", stderr);
    } else {
      fputs("\nUsing numerical score\n", stderr);
    } 
#endif

    err = BFGS_max(theta, npar, maxit, reltol, 
               fncount, grcount, loglik, C_LOGLIK,
               (DH->ascore)? anal_score : NULL, 
               DH, (prn != NULL)? OPT_V : OPT_NONE, 
               prn);
    
    amax[0] = loglik(theta, DH) - (t2 - t1 + 1) * log(scale);
    
#if GDEBUG
    test_score(DH, theta);
#endif

    err = garch_covariance_matrix(vopt, theta, DH, vcv);

    if (!err) {
      double sderr;

      /* transcribe coefficients and standard errors 
         note: slightly different from fcp */
      for (i=0, j=0; i<npar; i++) {
          if (vcv[j] > 0.0) {
            sderr = sqrt(vcv[j]);
          } else {
            sderr = 0.0;
          }
          j += npar + 1;
          amax[i+1] = theta[i];
          amax[i+1+npar] = sderr;
      }
    }

    free(theta);
    garch_container_destroy(DH);

    return err;
}

Generated by  Doxygen 1.6.0   Back to index